Cтр. 18

Оптимальное управление
Поделиться…

Человеку свойственно стремление к совершенству. В математике оно проявляется в поиске наилучших (оптимальных) решений, включая все задачи на максимум и минимум. К теории оптимального управления относятся те из них, где решение имеет некоторую протяженность во времени или в пространстве. Подходящий образ — прокладывание наилучшего пути при движении по сильно пересечённой местности.

Вообще, математики, как и все люди, очень любят зрительные образы, но в действительности речь идёт о любой системе, которую можно непрерывно менять в определённых пределах, как мы меняем направление движения при прокладывании пути. Другие подходящие примеры: управление автомобилем, летательным аппаратом, технологическим процессом, своим телом, в конце концов.

Требуется наилучшим образом перевести систему из заданного состояния в желаемое: как можно быстрее, или наиболее экономным образом, или с наибольшей выгодой, или в соответствии с каким–то более сложным критерием; мы сами решаем, что важнее. Если мгновенная реакция системы на наши действия хорошо известна, то теория оптимального управления призвана помочь нам найти наилучшую долговременную стратегию. Вот простой пример: нужно как можно быстрее остановить колебания (скажем, остановить «качели»), прикладывая свою невеликую силу то с одной стороны, то с другой. Переходить с одной стороны на другую придётся многократно. По какому правилу это делать? Понятно, что «качели» могут быть и финансовыми, и экономическими, и физико–техническими…

Стоит заметить, что такой очевидно прикладной предмет, как теория оптимального управления, был создан в Математическом институте имени Стеклова чистыми математиками, Львом Семёновичем Понтрягиным и его учениками, профессиональными топологами. Первые впечатляющие применения этой теории, принесшие ей славу, относятся к советской космической программе и американской программе «Аполлон». В этих программах всё делалось на пределе возможностей, и без умной оптимизации было не справиться. Среди популярных тогда задач можно отметить наиболее экономный перевод космического аппарата с одной эллиптической орбиты на другую и мягкое прилунение. Главное достижение того периода — принцип максимума Понтрягина — мощное универсальное средство, позволяющее отобрать достаточно узкий класс управляющих стратегий, среди которых только и может быть оптимальная.

Принцип максимума Понтрягина особенно хорош в применении к простым «линейным» моделям, но теряет свою эффективность и должен быть дополнен другими средствами при исследовании систем с более сложной нелинейной структурой. Вернёмся к примеру с качелями. Если амплитуда колебаний небольшая, то система почти линейна и период колебаний почти не зависит от амплитуды. Принцип максимума даёт простой и однозначный закон оптимального поведения для линейного приближения: надо переходить с одной стороны на другую ровно через полпериода и всякий раз применять максимально возможную силу. В то же время при большой амплитуде, когда система существенно нелинейна, рекомендации принципа максимума сильно усложняются и перестают быть однозначными.

Новые правила оптимального поведения, дополняющие принцип максимума, даёт активно развиваемая в настоящее время геометрическая теория управления. Дело в том, что современная геометрия позволяет очень сильно расширять возможности управления, играя порядком и длительностью применения нескольких простых манёвров, отбирая оптимальные «гармоничные» сочетания манёвров, результат каждого из которых хорошо известен и вполне банален. Похоже на то, как из нескольких нот составляется симфония, только в математике всё точнее, строже и симметричней, хотя и не столь эмоционально.

Геометрическая теория управления применяется в космической навигации, робототехнике и многих других областях, но наиболее популярные современные приложения относятся, пожалуй, к квантовым системам (от медицинских аппаратов ядерного магнитного резонанса до химических манипуляций с отдельными молекулами). Обаяние геометрической теории управления состоит, среди прочего, в редкой возможности материализовать, увидеть и «пощупать» красивые и глубокие абстрактные математические концепции, ну и, конечно, создавать новые!